ANFIS Inverse Kinematics and Hybrid Control of a Human Leg Gait Model

نویسندگان

  • Arif Ankarali
  • Murat Cilli
  • Dinesh Manocha
چکیده

A hybrid learning procedure referred to as adaptive neuro fuzzy inference system (ANFIS) is applied to an artificial leg model to generate the correct positions of the servomotors actuating the leg joints. One of the most important control problems of mechanical arms and legs is the efficient calculation of correct joint angles for a space trajectory. Although this application represents the simplest model with two degrees of freedom, the practicality of ANFIS for such mechanical systems is validated. For the gait model of the proposed mechanism, the experimental planar motion of the ankle joint is transformed to joint angles by ANFIS and approximated by polynomial functions. The corresponding servomotor positions are obtained by the proposed inverse kinematic solution method and are included in a Simulink model as an embedded Matlab function. A hybrid control system consisting of combination of a proportional plus derivative (PD) controller and a fuzzy logic controller (FLC) is applied to control the selected servomotors. The accuracy of the control system is further verified on SimMechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Animation of Human Walking in Virtual Environments

This paper presents an interactive hierarchical motion control system dedicated to the animation of human figure locomotion in virtual environments. As observed in gait experiments, controlling the trajectories of the feet during gait is a precise end-point control task. Inverse kinematics with optimal approaches are used to control the complex relationships between the motion of the body and t...

متن کامل

Kinematics and Dynamics of a New 16 DOF Humanoid Biped Robot with Active Toe Joint

Humanoid biped robots are typically complex in design, having numerous Degrees‐of‐Freedom (DOF) due to the ambitious goal of mimicking the human gait. The paper proposes a new architecture for a biped robot with seven DOF per each leg and one DOF corresponding to the toe joint. Furthermore, this work presents close equations for the forward and inverse kinematics by divid...

متن کامل

A Comparative Study of Prediction of Inverse Kinematics Solution of 2-DOF, 3-DOF and 5-DOF Redundant Manipulators by ANFIS

In this paper, a method for solving forward and inverse kinematics of redundant manipulator is proposed. Obtaining the joint variables of these manipulators from a desired position of the robot end-effector called as inverse kinematics (IK), is one of the most important problems in robot kinematics and control. The difficulties in solving the IK equations of these redundant robot manipulator ar...

متن کامل

Strength Training and Kinematics Parameters of Gait in Healthy Female Elderly

Objectives: This study was under taken to consider the effect of strength training on some kinematics parameters of gait (step length, cadence and speed walking). Methods & Materials: Twenty-four healthy elderly women (with average and standard deviation age of 61.53±2.84 years, height of 157.1±5.5 cm, weight of 69.13±7.6 kg and BMI 28.1±3.6 kg/m) participated in this study. The strength of ...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013